凍結鋳型の小径中子への適用

藤井要* 谷内大世* 多田周二**

本報告では,溶融金属の凝固後に鋳ぐるみ状態となる中子の除去作業の効率向上を目的として,小径の 中子を有する凍結鋳型を用いた鋳造実験を行い,その複雑形状鋳物への適用性を検討した。その結果,ア ルミニウム合金による小径円筒形状鋳物の作製においては,湯廻り不良や大きな砂落ち等の外観上の目立った 欠陥や鋳物の内部欠陥は少なく,中子の除去性は極めて容易であった。一方,鋳型から発生する水蒸気の 影響によって,鋳物の表面に気泡によるクレーター状の凹みを生じて鋳肌が悪く,表面粗さは鋳物砂粒度に影響 を受けずに一定の値であった。

キーワード: 凍結鋳型, 中子, アルミニウム合金鋳物

Application of Frozen Cores to Pipe-shaped Mold Casting with Small-diameter Cores

Kaname Fujii, Taisei Yachi and Syuji Tada

In this study, for the purpose of improving the efficiency of removing cores after molding, the frozen mold casting process of aluminum alloy was performed, using a frozen core with a small diameter, and the applicability to complex shape casting was investigated. As a result, in the manufacture of a cylindrical, small-diameter core mold for aluminum alloy, there were few remarkable surface defects such as insufficient running of molten metal and big sand drops, and the removal of core sand was very easy. Meanwhile, craters caused by steam produced from the mold were observed on the surface, though the surface roughness was uniform, and was not affected by the grain size of the molding sand.

Keywords: frozen mold, core mold, aluminum alloy casting

1. 緒 言

砂に少量の水分を加えた湿砂を凍結させて固める凍 結鋳型鋳造法は、硬化のための樹脂を使用しないこと から、産業廃棄物の発生を抑制するうえで優れた利点 を有している。この技術は1970年頃に開発されたが、 コストが高く凍結に要する時間が長い等の理由から実 用化には至らなかった。近年、型枠を減圧して湿砂に 冷気を通気させるプロセスが開発されたことで、短時 間、低コストで凍結鋳型の作製でき、環境問題に対す る認識の変化も加って、再び注目されている^{1.2}。

一方, 鋳物の複雑形状化に伴い, 鋳物に複雑形状の 中子を使用して中空部を成形する要求が増えている。 中子は, 鋳物の外形を作る主型とは異なり, 溶融金属 の凝固後には鋳物内部で埋もれて鋳ぐるみ状態となる ため, 砂の除去は困難になる³⁾。特に数十ミリ以下の 中空部位が必要な鋳物に使用する中子では, それを除

*機械金属部 **(独法)産業技術総合研究所

去する際に必要な作業効率がしばしば問題視されてい る。この時,凍結鋳型で中子を作れば(以下,凍結中 子という),凍結した氷が溶けると中子が自己崩壊す るため,除去効率の向上を図ることができる。しかし, 凍結中子を使用した複雑形状鋳物の成形事例の報告は 少なく,その適用性は定かではない。そこで,本研究 では,小径の凍結中子を組み込んだ凍結鋳型を作製し て鋳造実験を行い,複雑形状鋳物への適用の可能性に ついて検討した結果について報告する。

2. 凍結鋳型の作製

2.1 凍結装置の概要

凍結鋳型作製のために試作した装置の概略を図1に 示す。鋳型作製の手順では、初めに、ベントホールを 設けて通気性を持たせた鋳型パターンを減圧吸引装置 の上に置き、型枠をセットして水を含ませた湿砂を充 填する。次に、減圧装置ごと-40℃程度の冷凍庫に入 れ、鋳型パターンを減圧吸引すると差圧が発生し、砂 型内に冷気が導入されて鋳型が短時間で凍結,硬化す る。図2は,試作した凍結装置である。図の手前が湿 砂を充填した型枠を載せて減圧吸引する装置であり, 奥にある冷凍庫中に装置を入れて冷気を吸引する。

図1 凍結装置の概略

図2 凍結鋳型装置

2.2 小径中子を有する鋳型の作製

中子を有する凍結鋳型の評価には、図3の模式図に 示すような円筒の鋳物を2本鋳造する鋳型を用いた。 寸法および形状は、長さを40mm、肉厚を3mmに固定 し、中空部となる中子は4~18mmの間で変化させた。 この時の外径は10~24mmである。湿砂には、三河珪 砂6号に5重量%の水を加え、混練機で混合して実験に 供した。調整した湿砂をケミカルウッドで作製した型 枠中に手込めで充填し、15分程度の冷気通風により凍 結させ、凍結状態を確認して型枠から抜型した。

図4に作製した凍結鋳型を示す。写真は、上型と下 型を重ね合わせる前の状態であり、下型には別に凍結

図4 凍結鋳型

させた直径の異なる棒状中子を組み込んである。型の 組み合わせ時には、体温で溶融しないように革手袋を するなどの注意が必要であり、作業は冷凍庫内で十分 冷却したステンレス製のトレーの上で行った。

3.鋳造実験

3.1 鋳造作業の評価

JIS AC4Cのアルミニウム合金を電気炉で溶解し, 740℃の注湯温度で鋳造した。図5に注湯直後の鋳型の 様子を示す。なお,注湯時には,鋳型との反応による 水蒸気爆発や著しい煙が発生するなどの安全性に関す る不安や作業性を阻害するような現象は一切起こらな かった。また,鋳湯の数分後には,図6に示したよう に型の自己崩壊が始まった。さらに,いずれの径の中 子においても砂の除去に特別な作業を要することなく, 極めて除去が容易であった。

3.2 鋳物の評価

図7(a)に作製した鋳物の全体外観の一例を示す。図 7(b)は今回の実験において最も小さい直径4mmの中子 を用いて作製した円筒鋳物である。このように中子の 直径が4~18mmの間においては、いずれの内径の円筒 鋳物でも鋳造が可能であり、湯廻り不良や砂落ち等の 外観上での目立った欠陥は見られなかった。

ところで,一般に砂型鋳造における鋳物の表面粗さ は、鋳型の砂の粒度に依存して変化する。そこで、湿 砂の粒度を8号に変更して同様な鋳造実験を行い、型 ばらしの際に十分な砂落としを行ってから鋳物の表面 粗さを測定した。得られた結果を表1に示す。最大高 さRyは、両者ともに35µm程度と同レベルにあった。 また、鋳物の表面を拡大したところ、図8中で矢示し たように大きいもので1ミリ程度の気泡のようなクレ ーター状の凹みが観察された。図8は鋳型に6号珪砂を 用いた場合の鋳物表面の拡大写真である。その粒度は, ふるいの見開きで212~300 µmに分布のピークを持ち, 最も大きい粒子でも400μm程度である。したがって, 写真に見られるクレーター状の凹みは砂粒子よりもは るかに大きく、凹みの内部には茶褐色の砂粒の凝集と 残留が確認された。8号珪砂を用いた場合でも同じ大 きさのクレーター状の凹みを生じていることから、凍 結鋳型で作った鋳物の表面粗さは、砂の粒度には依存 せずに大きいことがわかった。また, 凹みの形状がク レーター状をしていることから, 鋳物表面の粗さは, 溶湯が鋳型に触れた際に鋳型表面で形成される水蒸気 膜に起因したものではないかと考えられた。

次に円筒形状の鋳物を長手方向の中央部で輪切りに して,鋳物断面を鏡面研磨してミクロ観察を行った結 果を図9に示す。観察位置はガス欠陥を発生し易い上 型の円筒上部である。上型の鋳壁近傍には,矢示した 箇所で微細な欠陥が多数存在していることが確認され た。それぞれの大きさは10μm程度の円形状であり, 鋳型からのガス吹かれ欠陥ではないかと考えられる。 それ以外の欠陥はほとんど見つけることができなかっ た。顕微鏡レベルの微細な欠陥が通常の砂型鋳物でも 生じ得る欠陥の大きさと数しか確認されず,凍結鋳型 で健全な鋳物を作製できることが確認された。

図5 注湯直後の鋳型の様子

図6 鋳型の自己崩壊の様子

(a) 鋳物の外観(b) 直径4mmの中子による鋳物図7 凍結鋳型による鋳物

図8 鋳物表面の拡大写真

表1 鋳物砂の細かさの違いによる鋳物の表面粗さ

鋳物砂	6号珪砂	8号珪砂	
Ry (最大高さ) µm	34.3	37.4	

表2 注湯温度を変化させた場合の鋳物の表面粗さ

注湯温度 °C	700	720	740	760	780
Ry (最大高さ) µm	29.2	32.3	34.3	27.3	30.3

図9 鋳物断面のミクロ写真

3.3 注湯温度に対する影響

凍結鋳型における湯廻り性の注湯温度に対する影響 を調査するため、注湯温度を700~780℃の間で変化さ せた鋳造実験を行った。今回実験を行った円筒形状の 小径中空鋳物に関しては、いずれの注湯温度において も外観上の欠陥のない鋳物を作製することが可能であ り、生型と同じ注湯温度でも鋳造できることがわかっ た。また、それぞれの注湯温度における鋳物表面の粗 さの測定結果を表2に示す。最大粗さRyは29.2~34.3 μ mの間にあって特に優位差は認められず、ばらつきの 範囲内と考えられ、注湯温度に対する表面粗さの影響 は小さかった。

4.結 言

冷気を通風させながら鋳型を短時間に凍結させる凍 結鋳型製造装置を試作し,凍結中子を使用した凍結鋳 型を作製した。この鋳型を用いたアルミニウム合金の 鋳造実験を行い,以下の知見が得られた。

- (1) 凍結鋳型への注湯においては、安全や作業性を阻 害するような危険な現象は一切起こらなかった。 また、型ばらし作業において、中子砂は極めて 除去しやすかった。
- (2) 内径が4~18mmの小径円筒鋳物でも鋳造可能であり、湯周り不良や大きな砂落ち等の外観上の目立った欠陥は生じなかった。鋳物断面の観察では、顕微鏡レベルの微細なガス欠陥が発生していたが、通常の砂型鋳物と同様の健全な鋳物であった。
- (3) 鋳物の表面粗さは、砂の粒度や注湯温度に影響されずに一定の値となった。表面には気泡のようなクレーター状の凹みが観察され、鋳型表面に形成される水蒸気膜に起因したものであると考えられた。

参考文献

- 1) 松本秀人, 前田善之, 福田喜伸. 鋳造工学. 2008, vol.80, no.6, p.370 374.
- 2) 多田周二, 尾村直紀, 村上雄一朗. 鋳造工学. 2013, vol.85, no.2, p.107 112.
- 八百川盾,安斎浩一,山田養司,吉井大,福井広之. 鋳造工学.2004, vol.76, no.10, p.823 - 829.